首页> 外文OA文献 >Off-grid direction of arrival estimation using sparse Bayesian inference
【2h】

Off-grid direction of arrival estimation using sparse Bayesian inference

机译:使用稀疏贝叶斯推断的离网到达方向估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Direction of arrival (DOA) estimation is a classical problem in signal processing with many practical applications. Its research has recently been advanced owing to the development of methods based on sparse signal reconstruction. While these methods have shown advantages over conventional ones, there are still difficulties in practical situations where true DOAs are not on the discretized sampling grid. To deal with such an off-grid DOA estimation problem, this paper studies an off-grid model that takes into account effects of the off-grid DOAs and has a smaller modeling error. An iterative algorithm is developed based on the off-grid model from a Bayesian perspective while joint sparsity among different snapshots is exploited by assuming a Laplace prior for signals at all snapshots. The new approach applies to both single snapshot and multi-snapshot cases. Numerical simulations show that the proposed algorithm has improved accuracy in terms of mean squared estimation error. The algorithm can maintain high estimation accuracy even under a very coarse sampling grid.
机译:到达方向(DOA)估计是许多实际应用中信号处理中的经典问题。由于基于稀疏信号重建的方法的发展,其研究最近得到了发展。尽管这些方法已显示出优于传统方法的优势,但在实际情况下仍存在困难,因为在这种情况下,真正的DOA不在离散采样网格上。为了解决这种离网DOA估计问题,本文研究了一种离网模型,该模型考虑了离网DOA的影响,并且建模误差较小。从贝叶斯的角度出发,基于离网模型开发了一种迭代算法,同时通过为所有快照的信号假设一个拉普拉斯先验来利用不同快照之间的联合稀疏性。新方法适用于单快照和多快照案例。数值仿真表明,该算法在均方估计误差方面具有更高的精度。即使在非常粗糙的采样网格下,该算法也可以保持较高的估计精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号